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a b s t r a c t

Near-infrared chemical imaging (NIR-CI) is the fusion of near-infrared spectroscopy and image analysis.
It can be used to visualize the spatial distribution of the chemical compounds in a sample (providing a
chemical image). Each sample measurement generates a hyperspectral data cube containing thousands
of spectra. An important part of a NIR-CI analysis is the data processing of the hyperspectral data cube.
The aim of this study was to compare the ability of different commonly used calibration methods to
generate accurate chemical images. Three common calibration approaches were compared: (1) using
single wavenumber, (2) using classical least squares regression (CLS) and (3) using partial least squares
regression (PLS1). Each method was evaluated using two different preprocessing methods.

A calibration data set of tablets with five constituents was used for analysis. Chemical images of the active
pharmaceutical ingredient (API) and the two major excipients cellulose and lactose in the formulation
were made. The accuracy of the generated chemical images was evaluated by the concentration prediction
ability. The most accurate predictions for all three compounds were generated by PLS1. The drawback of
PLS1 is that it requires a calibration data set and CLS, which does not require a calibration data set,
therefore proved to be an excellent alternative. CLS also generated accurate predictions and only requires
the pure compound spectrum of each constituent in the sample. All three calibration approaches were
found applicable for hyperspectral image analysis but their relevance of use depends on the purpose of
analysis and type of data set. As expected, the single wavenumber method was primarily found useful for

compounds with a distinct spectral band that was not overlapped by bands of other constituents.
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This paper also provide
typical steps involved.

. Introduction

Near-infrared chemical imaging (NIR-CI) is an emerging tech-
ology within the pharmaceutical industry compared to the now
ell-established traditional NIR spectroscopy. Pharmaceutical NIR

pectroscopy applications range from raw material testing through
rocess monitoring to final product analysis [1–5]. The conven-
ional single point NIR spectroscopy measures a bulk average NIR

pectrum and reflects an average composition of the sample. NIR-
I adds spatial distribution information to the spectral information
y combining traditional NIR spectroscopy with digital imaging. In
IR-CI, a NIR spectrum is recorded in each pixel of the sample image
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ance for hyperspectral image (or NIR-CI) analysis describing each of the
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esulting in a hyperspectral data cube. Translating the spectral sig-
ature from each pixel into, for example, chemical concentrations
ill generate a set of chemical images showing the distribution of

ach ingredient within the sample matrix. This visualization of the
nternal structure and elucidation of the distribution and cluster
ize of each constituent in the sample is valuable in formulation
evelopment and manufacturing of solid dosage forms as well as
or troubleshooting quality defects. NIR-CI has the potential to pro-
ide increased process and product understanding which goes well
n hand with the process analytical technology (PAT) initiative of
he FDA [6]. Briefly, the concept of PAT is to build in quality by
esign instead of merely passively testing the quality of the prod-
cts and manufacturing processes. PAT promotes technologies that

an identify and monitor critical process parameters and the goal
s to enhance understanding and control the manufacturing pro-
ess. NIR-CI is such a technology and has received attention by
he FDA, which has evaluated NIR-CI for different pharmaceutical
pplications [7–10].

http://www.sciencedirect.com/science/journal/07317085
mailto:cra@novonordisk.com
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Table 1
Calibration methods used for analysing hyperspectral data cubes in pharmaceutical
applications

Calibration approach Reference

Single wavelength [7,12,24,26,30,36,37]
Peak–height ratio [26,38]
Correlation coefficient [26]
PCA [19,21,24,31,33,36,38]
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The majority of the early NIR-CI literature in pharmaceutical
nalysis describes the general principle of this new technology and
ts potential use. The applications include root-cause analysis of

anufacturing problems, product development, quality assurance
nd quality control but are mostly feasibility studies on relatively
imple model systems or examples on a single pharmaceutical
ample [7,11–17]. The pharmaceutical NIR-CI research later moved
nto developing methods to analyse hyperspectral NIR images and
nvestigating the factors affecting NIR-CI of solid dosage forms
18–23]. In the past few years the number of pharmaceutical appli-
ations using NIR-CI has increased significantly [3,9,24–29] and
ecently NIR-CI is seen integrated in formulation development
30,31], used for mechanistic powder blending studies [32,33] and
review has also been published [34].

For NIR-CI to develop into a useful and well accepted technol-
gy in pharmaceutical analysis it is important to have a thorough
nderstanding of how to properly measure and analyse such data.
he analytical work of a NIR-CI experiment can be divided into three
verall steps:

Data acquisition Includes sample preparation, instrumental set-
tings and basic spectral transformation. The raw data output from
a NIR-CI measurement is organised in a 3D data structure with
two spatial axes and one wavelength axis, also called a hyper-
spectral data cube.
Data processing The processing of the hyperspectral data cube
into a, typically chemical, image by univariate or multivariate
image analysis approaches. This part includes wavelength selec-
tion, spectral preprocessing and the subsequent data analysis to
generate the chemical images showing the distribution of each of
the ingredients within the imaged sample.
Image processing The processing of the generated chemical
images into relevant and ‘useful’ information that will qualita-
tively or quantitatively describe the properties of a sample in
relation to the problem investigated. This could, for example,
be a total concentration or a measure of the distribution of the
concentration of the active ingredient.

Each of the three steps in a full hyperspectral image analysis is
mportant for a successful NIR-CI experiment. If the spectral qual-
ty from the data acquisition is poor, no multivariate image analysis

ethod is able to compensate for this and still generate accurate
esults. If the data processing method is suboptimal, inaccurate
hemical images will be generated that will lead to erroneous con-
lusions in the subsequent image processing analysis. And finally,
ven when an accurate chemical image is generated, poor image
rocessing methods may extract the wrong product or process-
elated information from the images. It is therefore imperative that
ach of the three overall steps is thoroughly investigated and their
trengths and limitations are known.

A variety of factors affect the quality of the output for each of the
hree steps. The present study focuses on the data processing part
enerating the chemical images. Unfortunately, there exists no uni-
ersal data processing method that is superior for all hyperspectral
ata cubes. The choice of proper analysis will depend on the data
et and the purpose of analysis. Table 1 presents an overview of ca-
ibration methods demonstrated in the NIR-CI literature analysing
yperspectral data cubes of pharmaceutical samples. Common for
ost of the studies in Table 1 is that the pharmaceutical appli-

ation is the main purpose. The data processing methods is of

ourse an important part of the studies but often not critically
valuated for its appropriateness. Many of the early NIR-CI studies
sed univariate approaches (single wavenumber, peak–height ratio
tc.). More attention has since been drawn to develop multivari-
te approaches to extract more information from the hyperspectral
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LS [27,30]
LS2 (pure spectra) [7,9,14,19,24,29,32,33]
LS2 (calibration set) [26,27]

mages. For example, Jovanovic et al. [26] evaluated four differ-
nt data processing approaches to analyse mixtures of lysozyme
nd trehalose. The contrast in the chemical images were compared
y methods using intensity of a single wavelength, peak–height
atio of two wavelengths, correlation coefficient with a reference
pectrum and principal component analysis (PCA). The correlation
oefficient method was also compared with partial least squares
PLS) regression for further homogeneity investigations. Gendrin
t al. [27] compared classical least squares (CLS) and PLS regression
or best content prediction of the active pharmaceutical ingredient
API) and two excipients in pharmaceutical solid dosage forms.

Although different univariate and multivariate data processing
pproaches are applied to pharmaceutical applications it is often
ot easy to compare the results. Chemical images generated from
ifferent data processing methods may visually look similar but
ctually provide different chemical information. Thus, there is a
ack of objective criteria or, for example, a ‘NIR-CI calibrated tablet’
o assess what the ‘best’ or most accurate image is [20]. Studies are
ften seen comparing data processing methods by differences in
ontrast of the generated images. However, the goal of the data pro-
essing step in a NIR-CI experiment is not to generate high contrast
ut to generate the right, i.e. accurate, contrast.

In this study, three common calibration approaches were eval-
ated for their ability to generate accurate chemical images of the
PI and two major excipients in a five-compound pharmaceutical
olid dosage form. The aim of the study is to investigate the ability
f different commonly used hyperspectral image data processing
ethods to generate accurate chemical images. The three calibra-

ion approaches compared were (1) using a single wavenumber for
alibration, (2) using classical least squares (CLS) where estimates
f pure spectra are used to obtain concentration estimates [35] and
3) partial least squares regression (PLS) where a regression model
s built between measured spectra and known concentrations [35].
wo different spectral preprocessing methods were investigated for
ach of the three data processing approaches. They were selected
s the two best performing preprocessing methods selected from a
omparative study of a range of different preprocessing approaches
pplied to each of the data processing methods. Further, this paper
elineates the general steps involved in data processing of hyper-
pectral data cubes and can thus also be used as practical guidance
or this analytical approach.

. Materials and methods

.1. Materials

Due to intellectual property rights, the name and structure of
he active pharmaceutical ingredient (API) cannot be shown. It

s simply denoted API. The excipients for the tablet formulation

ere silicified microcrystalline cellulose (ProSolv SMCC® HD90, JRS
harma, Germany), �-lactose monohydrate (Tablettose®70, Meg-
le, Germany), magnesium stearate (Liga MF-2-V, Peter Greven
ett-Chemie, Germany) and talc (Unikem, Denmark).
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.2. Samples

A five-compound conventional pharmaceutical tablet formu-
ation was used to produce the calibration data set analysed
hroughout this study. The nominal composition was active phar-

aceutical ingredient (API: 6.3%, w/w), microcrystalline cellulose
MCC: 20.0%, w/w), lactose (lact: 71.5%, w/w), and the lubricants

agnesium stearate (0.75%, w/w) and talc (1.5%, w/w). From this
ominal composition a calibration data set of 9 batches was
esigned by a D-optimal formulation design using Modde soft-
are [39]. The design was constructed to vary the API and cellulose
30% from their nominal values. The content of the lubricants mag-
esium stearate and talc were fixed and lactose was adjusted to
ake a total of 100%. Table 2 shows the concentrations of the five

ompounds for each of the 9 calibration batches.
The dry-blend formulations were all mixed in a drum-mixer

nd compressed into tablets of 175 mg by direct compression on
6-punch station rotary tablet press. A flat punch-set was used to
btain a flat sample surface. The diameter of the tablets was 8 mm
nd the thickness 2.6 mm. Batch sizes were 500 g and tablets were
ollected from start, mid and end of the tabletting process. Pure
ompound reference samples of the API and the excipients were
lso produced. Approximately 250 mg of each raw material was
ompressed into 8 mm diameter wafers on a hydraulic tablet press
sing 10 kN pressure for 10 s. The wafers were analysed similar to
he pharmaceutical tablets and used to generate pure compound
eference spectra.

.3. Data acquisition

To get a representative sampling from each batch two tablets
rom start, mid and end of the tabletting process were analysed
rom each of the 9 calibration batches, i.e. a total of 54 samples (6
ablets from each of 9 batches).

Each tablet was fixed onto a microscope slide using cyanoacry-
ate glue and measured directly on the flat tablet surface. Samples

ere analysed on a NIR line mapping system (Spectrum Spot-
ight 350 FT-NIR Microscope, PerkinElmer, UK) from which 16
pectra were collected in each acquisition from a linear MCT detec-
or array. An area of 2 mm× 2 mm were analysed using pixel size
5 �m × 25 �m thus obtaining a total of 6400 spectra (= pixels) for
ach image. Each spectrum was the average of 8 scans from wave-
ength region 7800–4000 cm−1 using a 16 cm−1 spectral resolution.

.3.1. Spectral correction
As the spectral responses obtained from a NIR-CI measurement

ontain information from both the sample and the instrument it
s necessary to correct for the instrument response by using a
ackground reference. The raw data from the data acquisition is
hus relative NIR diffuse reflectance data (R = Rsample/Rbackground)
rganised in a 3D structure (hyperspectral data cube). The high-
eflectance standard SpectralonTM (Labsphere, Inc., North Sutton,
ew Hampshire) was used as background reference in this study.

The background corrected 3D image data files were imported
nto Matlab software [40]. All image data processing was performed
sing in-house scripts together with PLS Toolbox [41].

.3.2. Conversion to absorbance

Prior to data analysis all raw reflectance data (R) were

ransformed into absorbance (A) by the relation A = −log10 (1/R).
ssuming the path length on average is constant for the NIR dif-

use reflectance mapping measurements of the sample, a linear
elationship exists between absorbance and chemical compound
oncentration (Beer–Lambert law).
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.3.3. Unfold 3D hyperspectral data cube
Hyperspectral image data can be analysed by both ordinary two-

ay and three-way methods but the two-way methods have been
ound most suitable for this type of data [42]. In our study, ordinary
wo-way multivariate methods are compared and to make hyper-
pectral image data amenable for two-way methods it is necessary
o unfold the 3D hyperspectral data cube to a 2D matrix, in which
ach row is a spectrum related to one of the pixels. Once all data
cquisition and data processing has been performed the resulting
D matrix is refolded to retain the pixel location of each spectrum
nd generate the chemical image.

.4. Data processing

Prior to applying the actual data analysis method that generates
he chemical image the wavenumber range and spectral prepro-
essing methods must be selected. These two steps are described
elow together with the specific settings used in this study.

.4.1. Variable selection
Multivariate methods often excel above univariate methods

ecause of their ability to use the entire measured wavenumber
ange. Nevertheless, the precision of a multivariate method can,
n some cases, be improved by a proper variable selection. In this
tudy, variable selection by variable importance in the projection
VIP) [43,44] was used to select the optimal wavenumber range(s)
or the PLS1 model. For CLS the noisy wavenumber ends were
emoved and the spectral range was reduced to 7500–4200 cm−1.
or the single wavenumber method the wavenumber was selected
t positions with a distinct spectral absorption band having lit-
le spectral overlap from the other compounds. This was assessed
isually.

.4.2. Spectral preprocessing
The raw NIR diffuse reflectance spectra obtained from a NIR-CI

easurement contain both chemical and non-chemical informa-
ion about the solid sample [45]. The source of the non-chemical
nformation may be from the sample (e.g. uneven sample surface
r differences in sample density) and/or the instrumentation (e.g.
hanges in lamp intensity or detector response). The effects are
ypically observed as spectral baseline offsets or a sloping baseline.

As it is the chemical information that is of interest the non-
hemical biases are sought and removed by different preprocessing
echniques. These preprocessing techniques are routinely used in
onventional NIR spectroscopy and their effects on hyperspectral
IR images have also been investigated [21,27]. The most common
reprocessing approaches used in NIR-CI experiments on pharma-
eutical solid dosage forms are first and second Savitzky–Golay
erivative transformation [46], standard normale variate (SNV)
47], multiplicative scatter correction (MSC) [48] or a combination
ereof.

In this study a calibration data set was available. It was thus
ossible to perform regression analysis by all three calibration
pproaches trying different preprocessing treatments and choosing
he preprocessing giving best results. Using this approach the two
est preprocessing methods found for each data processing method
ere selected and used for comparison throughout this study.

avitzky–Golay derivative transform implies choosing derivative
rder, filter width and polynomial order. For example a first deriva-
ive transform with a nine-point filter width and polynomial order

hree is denoted here as “first (or 1st) derivative (9/3)”.

.4.3. Calibration methods
At this stage of the overall NIR-CI analysis the spectral data are

ranslated into concentrations producing the NIR chemical images.
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Table 2
Composition (% w/w) of the five-compound pharmaceutical tablet formulations constituting the 9 calibration batches

Ingredients (particle size*) 1 2 3 4 5 6 7 8 9

API (2.4/11/129) 4.38 8.14 4.38 8.14 4.38 8.14 6.26 6.26 6.26
Cellulose (43/121/272) 14.00 14.00 26.00 26.00 20.00 20.00 14.00 26.00 20.00
Lactose (13/62/152) 79.37 75.61 67.37 63.61 73.37 69.61 77.49 65.49 71.49
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agnesium stearate (1.7/4.7/19) 0.75 0.75 0.75
alc (3.5/13/44) 1.50 1.50 1.50

* Particle size measures (�m) of the cumulative volume distribution given by
astersizer 2000 laser diffraction system.

imilar to preprocessing treatments there do not exist any standard
alibration method that is superior for analysing all hyperspectral
ata cubes. The choice of calibration method will depend on the
ype of data set and the purpose of analysis.

The goal of this study was to compare the ability of three com-
on calibration methods to generate accurate chemical images of

he major ingredients in a solid dosage form. Hyperspectral NIR
mage data from 54 tablets (6 tablets from 9 calibration batches)

ere analysed by a single wavenumber method, CLS and PLS1.
The nine predicted concentrations (mean of 6 replicates) were

alculated for API, cellulose and lactose for each of the three
ethods. The method that generated the most accurate chemical

mages was evaluated by the accuracy of prediction of the overall
oncentration in the image, which was assessed by the model pre-
iction error (root mean square error of cross-validation; RMSECV).
haracteristics of the three common calibration methods are sum-
arized in Table 3.
All commonly used calibration approaches share the feature that

hey do not actively exploit the spatial information in the images.
lternatives that do exploit this are available [49] but they are not
ommonly used and are hence not included in this work. A general
escription of the principles for each of the three calibration meth-
ds used to analyse hyperspectral NIR images follows together with
he specific settings used for each data processing method in this
tudy.

.4.3.1. Single wavenumber method. The single wavenumber
ethod is a univariate approach and the chemical images gen-

rated from this method are based on the absorbance intensity
alues in each pixel at one specific wavenumber. To obtain an
mage with chemical information for a specific compound it is
mportant to select a wavenumber with a strong and distinct
bsorption band for that particular compound, i.e. with as little
bsorption interference as possible from the other compound’s
pectra in the sample. The most distinct absorption band is best
elected from the pure compounds NIR spectra if available and

referably from a derivative form of the spectra as this transform
ill enhance the spectral resolution of overlapping bands and
ighlight subtle spectral peaks. Second derivatives spectra are
ften preferred as the absorption peaks from this preprocessing
echnique appear at the same position as for the original peaks.

t
c
l
b
p

able 3
omparison of the three calibration methods used to analyse the hyperspectral NIR data c

alibration method Samples required for method

ingle wavenumber (univariate) NIR spectra of pure compounds (to
distinct absorption peaks)

LS (multivariate—supervised) NIR spectra of pure compounds

LS (multivariate—supervised) Calibration data set of known comp
0.75 0.75 0.75 0.75 0.75 0.75
1.50 1.50 1.50 1.50 1.50 1.50

%, 50% and 90% percentiles (D[v,0.1]/D[v,0.5]/D[v,0.9]) obtained using a Malvern

In this study, pure compound spectra normalised using SNV
ollowed by second derivative (9/3) were used to select the most
istinct absorption band for each of the three analysed com-
ounds in the tablets. This preprocessing method was selected
ogether with a second derivative (15/3) preprocessing for the sin-
le wavenumber regression analyses.

.4.3.2. Classical least squares (CLS). The multivariate classical least
quares (CLS) algorithm is often used in simpler spectroscopic
pplications and also appears to be an obvious choice for analysing
yperspectral images such as those in this paper [35]. The CLS
odel is based on the assumption that the measured spectra are

he sum of pure compound spectra weighted by the concentration
f the compounds. The relative concentrations of the compounds
n the sample can thus be estimated using only the pure compound
pectra according to Beer–Lambert’s law.

In our study, the pure compound spectrum for each of the five
onstituents was calculated as the mean spectrum of the hyper-
pectral data cube for each pure compound reference sample. Using
ll five pure compound spectra and the image cube mean spec-
rum of a sample the relative concentrations of the compounds in
he sample matrix were estimated by the CLS model. To generate a
hemical image for each compound in a sample, all spectra from the
yperspectral data cube were used to estimate the concentration
alues for each compound in each pixel.

The wavenumber range used for CLS in our study was selected
y removing the noisy end channels thus reducing the wavenum-
er range to 7500–4200 cm−1. The lowest prediction error was
btained using either the first derivative (9/3) or the second deriva-
ive (9/3) preprocessing of spectra and these two preprocessing

ethods were therefore selected for comparison.

.4.3.3. Partial least squares (PLS1). PLS is a multivariate regression
ethod used to build quantitative calibration models [35,50]. It

s a regression method that relates two data matrices, X (spectra)
nd Y (reference values), with each other. PLS requires a calibra-

ion data set composed of several samples spanning an appropriate
oncentration range to build a model for new predictions. This may
imit the use of the PLS method as calibration data sets can often
e difficult to obtain, for example, in the early development of a
harmaceutical formulation.

ubes in this study

Characteristics of method and preferred use

identify Qualitative use. Easy, seemingly intuitive and fast.
Exploratory analysis, valid for simple sample matrices.
Distinct spectral band for compounds required.

Quantitative use.
Relatively accurate, fast and easy.
Requires only pure compound spectra. Assumes Beer’s law valid.

ositions Quantitative use.
Accurate, robust predictive precision.
Requires full calibration data set.
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Table 4
Results from concentration predictions of API, cellulose and lactose for the single wavenumber method, CLS and PLS1
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or each calibration method results are presented for the two preprocessing treat
btained.

When a new hyperspectral data cube of a sample with identical
ngredients but unknown concentrations is applied to a PLS model
t will convert the spectral information of each pixel into predicted
oncentrations. The generated PLS prediction image of each com-
ound therefore shows the predicted concentration in each pixel
= chemical image). The predicted compound concentration of the
maged sample is calculated by the mean value of all predicted pixel
oncentrations.

In our study, PLS1 models were developed for each of the three
ajor compounds API, cellulose and lactose. The image cube mean

pectrum for each of the 54 calibration samples was first calcu-
ated followed by computing the mean spectrum of the 6 replicates
or each of the 9 calibration batches. The resulting 9 mean spec-
ra formed the data matrix X. The reference values in the Y matrix
ere the 9 theoretical concentrations (% w/w) for each of the three

ajor constituents given in Table 2. Each PLS1 model was developed

nd optimised regarding number of PLS components, wavenum-
er range(s) and preprocessing methods evaluated from regression
nalysis. Cross-validation was performed by leave-one-out cross-
alidation. The chosen preprocessing methods were first derivative

t
t
b
s
t

ig. 1. Pure compound reference spectra of the three major compounds constituting the
econd derivative (9/3) (right). The arrows point out the wavenumbers used for the single
showing best predictions. The grey-shaded area points out the best predictions

9/3) and second derivative (9/3) both followed by mean centering
nd the wavenumber ranges optimised for each model can be read
rom Table 4.

. Results and discussion

.1. Pure compound spectra and mean spectra of calibration
amples

The normalised (SNV) NIR absorbance spectra of the pure com-
onents API, cellulose and lactose were first examined to select
pecific wavenumbers for the single wavenumber analysis (Fig. 1,
eft). A distinct, sharp absorption band for API at 5984 cm−1 was
asily identified. It was more difficult to identify distinct absorption
ands for cellulose and lactose. They both showed broad absorp-

ion bands and were difficult to distinguish from each other due
o their similar spectral pattern caused by their chemical resem-
lance. The second derivative (9/3) of the NIR normalised (SNV)
pectra were therefore generated (Fig. 1, right). A distinct absorp-
ion band for lactose at 5168 cm−1 was now resolved but it was still

calibration batches. Spectra are preprocessed by SNV (left) and SNV followed by
wavenumber analysis.
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ig. 2. Image cube mean spectra of the 9 calibration batches normalised by standard
ormal variate (SNV).

ifficult to find a characteristic band for cellulose. Enlargement of
pectral regions finally identified wavenumber at 4280 cm−1 for
ellulose single wavenumber analysis although it was not as clear
nd well resolved as for the two other compounds and selection of
ther wavenumbers could be argued.

The CLS method used the pure compound spectra shown in
ig. 1 together with those of the two minor ingredients (not shown
ere). The PLS1 method used the mean spectra from each of the 9
alibration samples as matrix X (Fig. 2).

.2. Prediction of concentrations

The concentration predictions of API, cellulose and lactose
valuated by correlation coefficient, slope and prediction error
RMSECV) are shown in Table 4. In general, reasonable prediction
esults (low RMSECV values) were obtained by all three methods
nd for each of the two preprocessing methods examined.

For all three calibration methods the predictions of API
RMSECV: 0.18–0.54%) were more accurate compared to predic-
ions of the two excipients (RMSECV: 0.62–3.38%). This is not

urprising as the API component showed a very distinct absorption
eak with no large spectral interference from the other compo-
ents in the pharmaceutical tablet (Fig. 1). The predictions of
PI for all three methods with the preprocessing giving the best
redictions are shown in Fig. 3.

e
b
a

t

ig. 3. Linear regression results of API concentration for single wavenumber method (left
iving the best regression and concentration predictions.
iomedical Analysis 48 (2008) 554–561 559

Excipient predictions were less accurate for API and with a
enerally poorer prediction of lactose compared to cellulose. This
ay be surprising as lactose had a more resolved and characteristic

bsorption peak than could be found for cellulose. The difference
ould probably be explained by the more narrow lactose concen-
ration range between the different calibration batches (9 levels in
teps of ∼ 2%) compared to cellulose (3 levels in steps of 30%, cf.
able 2).

PLS1 was the superior regression method to predict concentra-
ions for all three compounds. The best predictions were obtained
or PLS1 using first derivative (9/3) followed by mean centering
Table 4, shaded area). For this PLS1 model API prediction was
ighly accurate with low prediction error (RMSECV = 0.18%) and
orrelation 0.99. The API prediction for the two other calibration
ethods showed less accurate but still reliable results with CLS pre-

ictions being slightly better than the single wavenumber method.
The better concentration predictions of cellulose compared to

actose were observed for CLS and single wavenumber but not for
LS1. The PLS1 predictions of the two major excipients were simi-
ar and quite accurate with RMSECV < 0.88% and correlation > 0.97.
or CLS and single wavenumber the prediction error values and
orrelations followed API < cellulose < lactose.

For the PLS1 models the results illustrate that first derivative
9/3) preprocessing gave better prediction than second derivative
9/3) preprocessing both followed by mean centering. This may only
e the case for this data set and it should also be noted that the re-
ults were only slightly better for the first derivative preprocessing.

.3. Chemical images

The aim of this study was to evaluate the selected methods
bility to generate accurate chemical images. As discussed in the
revious section, PLS1 was the method that generated the most
ccurate overall predictions and therefore presumably the most
ccurate chemical images can be obtained using PLS. Fig. 4 shows
he chemical images of API, cellulose and lactose for a tablet of
atch 9 composition (cf. Table 2) analysed by single wavenumber,
LS and PLS1 methods using their best performing preprocessing
reatment. The images show the distribution of the predicted con-
entrations of the three major compounds.

The chemical images of API appeared visually similar for the
ingle wavenumber, CLS and PLS1 methods with only minor differ-

nces in the distribution information. Again, this can be explained
y the distinct, well resolved absorption band for API which makes
ll three methods suitable for mapping API within the sample.

The single wavenumber method did not extract the distribu-
ion information of cellulose and lactose very well which was also

), CLS (middle) and PLS1 (right). Results are shown for the preprocessing methods
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Fig. 4. Chemical images of a tablet of batch 9 composition (cf. Table 2) generated from data processing using single wavenumber, CLS or PLS1. The chemical images show
t ction
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he distribution of the three major compounds API, cellulose and lactose. The predi
olor intensities relates to high/low concentration of the component of interest. (Fo
he web version of the article.)

eflected in the higher RMSECV values. CLS and PLS1 provided com-
arable visual distribution information of cellulose and lactose but
ith differences in the image contrast. The highest contrast for the

mages of cellulose was obtained by CLS whereas for lactose it was
y PLS1. In both instances the best concentration prediction, and
hus presumably the most accurate chemical image, was obtained
y PLS1. The observation that the best concentration prediction
ot necessarily produces images with the highest contrast is not
nusual (and could, for example, also be shown for images by the
ther preprocessing methods used in this study but not presented

ere).

This also delineates one of the limitations of NIR chemical imag-
ng. No tablet calibration standard exists for NIR chemical imaging
nd it is therefore not possible to set any objective criteria or con-
rm what the ‘correct’ chemical image is. Only with a calibration

4

o
i

errors (RMSECV) from Table 4 are shown beneath each image. High/low (red/blue)
rpretation of the references to colour in this figure legend, the reader is referred to

ata set available is it possible to statistically evaluate the most
ccurate generated images as performed in this study. A calibration
ata set is a prerequisite and always available for PLS but not for the
eneral use of the single wavenumber method and CLS (cf. Table 3).
his is both the advantage and disadvantage of PLS. Data processing
sing PLS may generate the most accurate chemical images but it
equires a calibration data set which is time consuming to produce
nd often not available (e.g. for a single trouble-shooting case or in
arly formulation development).
. Conclusion

This study emphasizes the importance of data processing as part
f a successful near-infrared chemical imaging analysis. Compar-
ng a single wavenumber method, CLS and PLS1 by their ability to
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redict API and excipient concentrations from hyperspectral data
ubes of pharmaceutical solid dosage forms, PLS1 proved most
ccurate. This means that PLS1 can be assumed to provide the most
ccurate chemical images when using the model on single-pixel
pectra. PLS1 is therefore also the preferred method when further
mage processing to extract process-related information from the
hemical images is needed.

All three calibration approaches were found applicable for
nalysing hyperspectral data cubes and generate chemical images.
ut their use depends on the purpose of analysis, type of data set
nd the accuracy of the generated chemical images required. The
ingle wavenumber method should primarily be used for initial
xploration of compound distribution in a sample and it requires
distinct NIR absorption band for the compound of interest. CLS
roved to be an excellent alternative to PLS1 generating only
lightly less accurate concentration predictions. An advantage of
LS is that it is relatively fast as it only requires pure compound
pectra of the sample constituents to perform the data processing.
LS1 is the method of choice when accurate concentration predic-
ions are required but the disadvantage is that a calibration data set
s needed which in many cases may not be available. Other calibra-
ion approaches to analyse hyperspectral image data cubes than
nvestigated in this study may also be used with similar success.
owever, the three common calibration approaches presented here
ill cover a wide range of possible pharmaceutical samples and

pplications.
The wavenumber and preprocessing selections were also found

o be an important part of data processing hyperspectral images.
his study indicated the importance of a careful selection of both
avenumber range(s) and preprocessing treatment in order to
btain the most accurate results but a more thorough investiga-
ion of the issue is needed to fully understand the impact of these
wo factors.

The general principles of each calibration approach and the typi-
al steps involved in a NIR-CI analysis is described in this work. This
aper may therefore be used as practical guidance for analysing
yperspectral image data of pharmaceutical solid dosage forms.

This study demonstrates the usefulness of NIR chemical imag-
ng when spatial distribution information of compounds in a solid
osage form is needed. But the message is also that care should be
aken not to over-interpret the chemical images. Chemical images
an be obtained by several different data processing methods but
he obtained accuracy might be quite different as shown in this
tudy. One should not be misled by images with high contrast as it
s not high contrast but the right, i.e. accurate, contrast that is the
oal. And the right contrast or accuracy of the chemical images can
o far only be evaluated using a calibration data set as demonstrated
ere. Generating accurate chemical images is of high importance

or the subsequent image processing analyses used to extract use-
ul information and, for example, numerically describe the quality
f the images. Different pharmaceutical conclusions may be drawn
rom chemical images of the same sample analysed by different
rocessing methods having different accuracies as shown in this
tudy. Developing image processing tools is not simple but is highly
eeded to further develop the technology of NIR chemical imaging.
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